Interpolation and scattered data fitting on manifolds using projected Powell-Sabin splines

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation and Scattered Data Fitting on Manifolds using Projected Powell-Sabin Splines

We present methods for either interpolating data or for fitting scattered data on a two-dimensional smooth manifold Ω. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of a family of charts {(Uξ , φξ)}ξ∈Ω satisfying certain conditions of smooth dependence on ξ. If Ω is a C2-manifold embedded into R3, then projections into tangent planes can be employed....

متن کامل

Scattered Data Fitting on Surfaces Using Projected Powell-Sabin Splines

We present C methods for either interpolating data or for fitting scattered data associated with a smooth function on a two-dimensional smooth manifold Ω embedded into R. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of local projections on the tangent planes. The data fitting method is a two-stage method. We illustrate the performance of the algorit...

متن کامل

Local subdivision of Powell-Sabin splines

We present an algorithm for local subdivision of Powell-Sabin spline surfaces. The construction of such a spline is based on a particular PS-refinement of a given triangulation. We build the new triangulation on top of this PS-refinement by applying a √ 3-subdivision scheme on a local part of the domain. To avoid degeneration we introduce a simple heuristic for refinement propagation, driven by...

متن کامل

Isogeometric analysis with Powell-Sabin splines

This paper presents the use of Powell-Sabin splines in the context of isogeometric analysis for the numerical solution of advectiondiffusion-reaction equations. Powell-Sabin splines are piecewise quadratic C functions defined on a given triangulation with a particular macro-structure. We discuss the Galerkin discretization based on a normalized Powell-Sabin B-spline basis. We focus on the accur...

متن کامل

Quasi-hierarchical Powell-Sabin B-splines

Hierarchical Powell-Sabin splines are C-continuous piecewise quadratic polynomials defined on a hierarchical triangulation. The mesh is obtained by partitioning an initial conforming triangulation locally with a triadic split, so that it is no longer conforming. We propose a normalized quasi-hierarchical basis for this spline space. The B-spline basis functions have a local support, they form a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IMA Journal of Numerical Analysis

سال: 2008

ISSN: 0272-4979,1464-3642

DOI: 10.1093/imanum/drm033